

Evolutionary algorithms for selecting the architecture of a
MLP Neural Network: A Credit Scoring Case

Alejandro Correa B., Andres Gonzalez M.
Banco Colpatria

Bogotá, Colombia
{correaal, gonzalean}@colpatria.com

Abstract—Neural Networks are powerful tools for classification
and Regression, but it is difficult and time consuming to
determine the best architecture for a given problem. In this
paper two evolutionary algorithms, Genetic Algorithms (GA)
and Binary Particle Swarm Optimization (BPS), are used to
optimize the architecture of a Multi-Layer Perceptron Neural
Network (MLP), in order to improve the predictive power of
the credit risk scorecards. Results show that both methods
outperform the Logistic Regression and a default neural
network in terms of predictability, but the GA are more time
consuming than the BPS. The predictive power of both
methods is similar to the Global Optimum but it is found in a
reasonable time.

Keywords; genetic algorithm; particle swarm optimization;
credit scoring; neural networks.

I. INTRODUCTION
In order to mitigate the impact of credit risk and make

more objective and accurate decisions, financial entities have
created new and better tools to predict and control their
losses [4][6]. This is why it has become common in financial
institutions around the world to use scorecards to measure a
customer's credit risk [1][8][12]. A scorecard is a statistical
model that allows attributing a rating (score) to a client,
which indicates the predicted probability that the customer
reflect a certain behavior. What is sought with scorecards is
to create an estimated measure of a customer’s risk, i.e., the
probability of a customer having a good payment habit if a
loan is granted, based on past experiences [11]. The most
commonly used method by financial institutions to estimate
these models is the Logistic Regression [2], because of its
predictive power and ease of interpretation. But there are
other methods, such as Neural Networks [7] which have a
higher level of complexity that could improve the predictive
power of the scorecards.

Neural Networks aren’t widely used in credit scoring due
to two main reasons, i) the difficulty with interpretability and
ii) the complexity in model development. When developing a
Multi-Layer Perceptron (MLP) Neural Network, analysts
have to address several kinds of issues regarding the Neural
Network parameters or architecture. In this paper, an
optimization of the architecture of the MLP Neural Network
is made using two optimization techniques: Genetic

Algorithm (GA) and Binary Particle Swarm (BPS)
Optimization. The objective function to maximize is the
ROC curve (Receiver Operating Characteristic) and the
decision variables are the number of hidden layers and their
activation function, the number of hidden units in each layer,
the activation function of the target layer, and whether or not
to use bias or to have a direct connection between the input
and output layer. Although, a similar optimization
methodology has been developed in other fields in the case
of the GA [3][18], to our knowledge, these methodologies
haven’t been applied to improve credit risk scorecards.

This paper is divided into six sections. First, a description
of the data and the variables used for the model development
is made. Subsequently, there is an introduction to general
concepts of MLP Neural Networks, GA and BPS techniques.
The third section poses the specific definitions for modeling
with the MLP and the optimization techniques. Next, the
results are shown based on a comparison of the optimization
algorithms with a default Neural Network architecture, and a
Logistic Regression. Also, all possible architectures of the
MLP for our case of study are calculated, and the Global
optimum is compared. Then, the algorithm is also used to
develop two additional models and the impact generated by
optimization methodologies is shown. Finally, a discussion
is made regarding the approaches used in this paper and
some specific issues.

TABLE I. DESCRIPTIVE STATISTICS OF THE VARIABLES

Variable N Mean Std. Dev. Minimum Maximum
X1 125,557 -0.027 5.823 -5.615 53.637
X2 125,557 0.002 1.629 -66.097 52.220
X3 125,557 0.003 1.511 -13.606 20.037
X4 125,557 0.000 1.376 -13.579 33.091
X5 125,557 0.014 2.108 -10.655 21.943
X6 125,557 -0.014 1.710 -8.699 38.439
X7 125,557 -0.002 1.656 -63.313 122.732

Using information provided by a local bank, 125,557

clients with active credit cards are used for the model
construction, and with the bank’s default definition over the
performance period, clients are classified into good and bad.
Variables names are changed to X1 … X7 by request of the
financial institution. The original variables have been

2011 11th IEEE International Conference on Data Mining Workshops

978-0-7695-4409-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDMW.2011.80

725

standardized and TABLE I displays the descriptive statistics
of the seven variables, while TABLE II presents the
correlation between them. The maximum correlation
between the seven variables is 0.017. Finally, TABLE III
shows how the original data is randomly divided into three
different datasets used for the scorecard development and
validation.

TABLE II. CORRELATION MATRIX

X1 X2 X3 X4 X5 X6 X7
X1 1 0.001 -0.005 0.004 0.017 0.003 0.000

X2 0.001 1 -0.002 0.014 -0.003 0.000 0.000

X3 -0.005 -0.002 1 0.011 -0.005 -0.001 -0.009

X4 0.004 0.014 0.011 1 -0.002 0.001 -0.009

X5 0.017 -0.003 -0.005 -0.002 1 -0.002 -0.001

X6 0.003 0.000 -0.001 0.001 -0.002 1 0.001

X7 0.000 0.000 -0.009 -0.009 -0.001 0.001 1

TABLE III. DEVELOPMENT AND VALIDATION DATASETS

Data N Percentage of the
total population Bad Rate

Train 50,223 40.00% 56.48%
Test 37,667 30.00% 56.68%

Validation 37,667 30.00% 56.84%
Total 125,557 100.00% 56.65%

II. GENERAL CONCEPTS

A. Multi-Layer Perceptron Neural Network
An Artificial Neural Network is a

mathematical/computational model that tries to imitate the
structure and functionality of biological neural networks [9].
It is composed by a set of simple computational units that are
highly interconnected. These units are called nodes, and each
one represents a biological neuron. In a Neural Network, the
hidden units receive a weighted sum of the inputs and apply
an activation function to it. Information is passed from one
layer to the next. Then, the output units receive a weighted
sum of the hidden units output and apply an activation
function to this sum. The Neural Network finds the weights
by an iterative process through different types of algorithms.

The network discussed in this paper is called a Multi-
Layer Perceptron Neural Network (MLP) and it has some
specific characteristics. In order to easily explain the MLP
Neural Network structure, Fig. 1 shows the main
components. It has an input layer that represents the input
variables to be used in the Neural Network model and it can
be connected directly with the output layer. It also has i
hidden layers and each layer contains j hidden units. In Fig. 1
the hidden units are represented by circles. The connections
between units are unidirectional and are represented by
directed lines. Each connection has an associate scalar called
weight w. The hidden units have a variety of hidden
activation functions and also a linear combination function.
Finally, the MLP has an output layer that computes for the
result of the process. The output layer also has a target
activation function. Both, the hidden layers and the output

layer could have the bias option activated. A bias term can be
treated as a connection weight from a special unit with a
constant, nonzero activation value. The term "bias" is usually
used with respect to a "bias unit" with a constant value of
one.

The single bias unit is connected to every hidden or
output unit that needs a bias term. Hence the bias terms can
be learned just like other weights.

Figure 1. MLP Neural Network structure.

B. Genetic Algorithm
A Genetic Algorithm (GA) is an optimization technique

that attempts to replicate natural evolution processes in
which the individuals with the considered best characteristics
to adapt to the environment are more likely to reproduce and
survive. These advantageous individuals mate between them,
producing descendants similarly characterized, so favorable
characteristics are preserved and unfavorable ones destroyed,
leading to the progressive evolution of the species.

GA aims to improve the solution to a problem by keeping
the best combination of input variables. The flow diagram
presented in Fig. 2 describes the process. It starts with the
definition of the problem to optimize, generating an
objective function to evaluate the possible candidate
solutions (chromosomes), i.e., the objective function is the
way of determining which individual produces the best
outcome.

The next step is to generate an initial random population
of n individuals called chromosomes that are symbolized by
binary strings, where each binary position of the
chromosome is called a gene and denotes a specific
characteristic (input variable). Therefore the combination of
all the different characteristics encoded in the string
represents an individual who is a candidate for the solution.

Each chromosome is evaluated in the objective function
and the best individuals are selected to survive for mating
(parents), while the worse ones are discarded to make room
for new descendants. There are many ways of pairing the
selected chromosomes [5]. In this paper, a weighted cost
pairing is used, which consists of assigning a selection
probability according to each chromosome cost. That is, a
chromosome with the higher cost has a greater probability of
mating because cost maximization is desired.

726

Figure 2. GA Flow diagram [5].

After selecting the parent chromosomes with the chosen
pairing method, the next step is to create a second generation
of individuals, based on the information of the parents. There
are several ways of mating [5]. In this paper, two parents
create one child.

In order to transfer the parent’s binary information to the
child, there are also different kinds of approaches such as the
one-point crossover. The one-point crossover technique
consists in selecting one random point on the parent’s string.
The child is created in the following way: First, the parent1
transfers its binary code from the first gene to the crossover
point. Then the parent2 transfers its binary code from the
crossover point to the last gene of the chromosome. New
parents are randomly selected for each new child and the
process continues until the chromosome population grows
back to the original size n.

Once the breeding process is completed, random
mutation is used to alter a certain percentage of the genes of
the chromosomes. The purpose of mutation is to introduce
diversity into the population, allowing the algorithm to avoid
local minima by generating new gene combinations in the
chromosomes. The most common mutation procedure is the
one called single point mutation. It’s implemented by
generating a random variable that indicates the position of
the gene that will be modified, from the population of
chromosomes. Generally, mutation is not allowed in the best
solution chromosomes because these “elite” individuals are
destined to propagate unchanged. In genetic algorithm this is
called elitism [5].

Finally, after mutation is done the new generation of
chromosomes is evaluated with the objective function and

used in the next iteration of the described algorithm. The
algorithm iterates until a maximum number of chromosome
generations are created or a satisfactory solution is reached.

C. Binary Particle Swam Optimization
Particle Swarm (PS) is a population based algorithm that

was introduced by Eberhart and Kennedy [14][15] to
simulate the social behavior and movements of animals
when they are together in a swarm or a shoal. Then, the
algorithm was used as a computation technique to optimize
the solution of a problem using a population of candidate
solutions called “particles”. These particles move along the
search space based on mathematical calculations regarding
their position and velocity. Each particle next movement is
affected by the inertia of the current movement, the best
position it has explore so far and the global best position
explored in the search space by all the particles of the
swarm. This method seeks to move the swarm toward the
best solution.

For the specific case of this paper, a binary
implementation of the particle swarm (BPS) optimization
algorithm proposed by Khanesar, Teshnehlab and
Shoorehdeli [17] is used instead of the original binary
algorithm of Kennedy and Eberhart [16], because the
original algorithm presents some limitations regarding the
parameters and the memory of the particles [17].

The flow diagram presented in Fig. 3 describes the
process for the BPS. It begins with the designation of the
cost function based on the problem to solve and the
parameters w, c1 and c2, where w is the inertia of the current
velocity, and c1, c2 are fixed variable defined by the user.

The next step is to randomly initialize the n particles of
the swarm within the search space. To do this, each binary
value of the particles (input variable), called bit, is randomly
set to 0 or 1. Once the initialization is done, each particle is
decoded to the real values of the input variables and the
performance is evaluated in the cost function. Then the
performance of each particle is compared with its best
solution found so far () and also with the best global
solution found by the swarm (). For each case, if the
current position of the particle presents a better solution than
its best solution found so far, then () is updated with the
new particle position. Likewise, if the best solution of the
current positions of the particles is higher than the best
global solution found by the swarm, then () is updated.

The next step is to update the velocity for each
particle. The velocity refers to how fast the particle moves in
though the search space. Then the new position of each
particle is calculated based on the previous value of the
particle (inertia) and the velocity.

Finally, the convergence criterion is verified. If the
algorithm meets the convergence criterion them it stops,
otherwise, the performance of the new positions of the
particles are evaluated in the cost functions and are used in
the next iteration of the algorithm. The BPS process can
iterate for a fixed number of times or until a satisfactory

727

solution is reached. For more detail information about the
formulas used in the BPS refer to Khanesar, Teshnehlab and
Shoorehdeli [17].

Figure 3. BPS Flow diagram.

III. MODELING
Now that the general concepts of MLP Neural Networks,

GA and BPS have been covered, it is time to focus on the
specific case of this paper. First, a definition about the
activation and combination functions in the MLP is
presented. Given that in credit scoring the objective is to
obtain a predicted probability to reflect a certain behavior of
a client, the MLP Neural Network target activation functions
have been bounded to functions with range between 0 and
TABLE IV and TABLE V present the activation and
combination functions used in this paper. Second, the
discussed network finds the weights through a
backpropagation algorithm [13].

TABLE IV. HIDDEN LAYERS FUNCTIONS

Hidden Combination
Function

Hidden Activation
Function

Hidden Activation
Function Range

Linear:

Linear:

Logistic:

arctan:
)

Hyperbolic Tangent:

TABLE V. HIDDEN LAYERS FUNCTIONS

Target
Combination

Function
Target Activation Function

Linear:

Logistic:

MLogistic:
Softmax:

Gauss:

Figure 4. Chromosome/Particle Structure.

In addition, for both optimization procedures the ROC
curve (Receiver Operating Characteristic) is chosen as the
objective function to maximize because it measures the
neural network capability to assign and rank relatively more
low scores to loans that eventually become bad than to loans
that continue with a good behavior. The ROC is also known
as the swap curve since it represents the exchange between
good clients and bad clients, i.e., the percentage of bad
clients to be allowed in order to accept a certain percentage
of the good clients.

Subsequently, the definition of the input variables and the
structure of the chromosome in the case of the GA and the
structure of the particle in the case of the BPS are carried
out. These definitions are the same in both algorithms; the
only difference is the way of referring to them. Seven input
variables are selected to form the chromosome/particle that is
going to have a total of 12 genes/bits which can generate a
total of 4,096 () possible combinations. The
chromosome/particle structure is defined in Fig 4.

TABLE VI. VARIABLES ENCODING

Hidden
Layers Hidden Units Direct

Connection

Hidden
Layers
Bias

00 = 1 000 = 1 0 = No 0 = No
01 = 2 001 = 2 1 = Yes 1 = Yes

10 = 3 …
11 = 4 111 = 8

Hidden
Layers

Activation
Function

Target Layer
Activation
Function

Target Layer
Bias

00 = Logistic 00 = Logistic 0 = No
01 = Linear 01 = MLogistic 1 = Yes

10 = Act Tan 10 = Softmax
11 = Tan H 11 = Gauss

728

Likewise, the variables of the chromosomes/particle are
encoded as shown in TABLE VI.

Finally, there are some key definitions that are specific to
each of the optimization algorithms. For the GA there is the
total size of the population, the number of “elite” individuals
and the percentage of genes to mutate from the entire
chromosome population. Correspondingly, the population
size is 16 individuals (chromosomes), the best four solution
chromosomes will remain unchanged and the percentage of
mutation is 2% of the genes of the total population. In the
case of the BPS there is the population size that is equal to
10, the number of iterations is set to 10, the inertia weight is
0.6, and both c1 and c2 are set to 0.6.

IV. RESULTS

A. Experimental results
In this section we present the results of the GA and the

BPS used to select the best architecture of the MLP Neural
Network. Results of a 30 iterations run with the GA, 10
iterations with the BPS are compared with the results of a
Neural Network using the default parameters of SAS
Enterprise Miner™ [10] (1 hidden layer, 3 hidden units, no
direct connection, hidden layer bias, hyperbolic tangent
hidden layer activation function, logistic target layer
activation function, target layer bias), a Logistic Regression
(most common algorithm in credit scoring) [2], and the
global optimum.

Figure 5. Comparison ROC curve

The comparison of the ROC curves obtained by the GA,
and the BPS in the MLP network and the other three
alternatives are exhibited in Fig. 5. The area under the ROC
curve of the GA and the BPS is (71.25%) wish is
significantly larger than that of the MLP Neural Network
using the default parameters (68.09%) and the Logistic
Regression (65.92%). This difference indicates that the GA
and the BPS in the MLP Neural Network has a greater

predictive power at all risk levels. The only alternative that
slightly exceeds the GA and the BPS performance is the
global optimum (71.26%) but the difference is so small that
it doesn´t represent a significant improvement in predictive
power.

TABLE VII. MEASURES OF COMPARISON

Model ROC CPU time (m) Function calls
Default MLP 68.09% 2 1

Logistic Regression 65.92% 1 1
GA - MLP 71.25% 559 274
BPS - MLP 71.25% 204 100

Global Optimum 71.26% 8,356 4,096

Besides the statistical evidence presented in the ROC

curve, TABLE VII shows the computational effort of each
alternative through two measures, the total time spent in
minutes (CPU time in minutes) and the number of times that
the function was called. Since the Logistic Regression and
the default MLP Neural Network are run only once, both
have only one function call and spent 1 and 2 minutes
respectively. As presented above, this two alternatives show
the worst predictive power measured by the ROC curve.

The GA used to optimize the MLP Neural Network
architecture spent 9.3 hours (559 minutes) in a 30 iteration
run and made 274 function calls while the BPS spent 3.4
hours (204 minutes) in the 10 iteration doing a total of 100
function calls. Finally the model used to find the global
optimum took 139.2 hours (8,356 minutes) and made 4,096
function calls (all possible combinations). These last tree
alternatives have approximately the same predictive power
and the difference in computational effort is evident. The GA
spent 1,395% less time and function calls than the global
optimum finding method while the BPS spent and 3,994.4%
less time and function calls than the global optimum finding
method and 173.5% less time than the GA.

Figure 6. Leaning curve ROC versus Iteration

69.40%

69.55%

69.70%

69.85%

70.00%

70.15%

70.30%

70.45%

70.60%

70.75%

70.90%

71.05%

71.20%

71.35%

1 4 7 10 13 16 19 22 25 28

RO
C

Iteration

BPS GA

729

Additionally, a third comparison was made regarding the
evolution of the optimization function (ROC curve) at each
iteration. The learning curves of the GA and BPS are shown
in Fig. 6. The learning curve of the GA has a slope of
0.0006 while the one of the BPS has slope of 0.0018 which
translates into an average increase of 208.65% in the speed
of evolution of the resulting networks ROC on each
iteration of the BPS over the GA.

Likewise it is important to note that even from the first
iteration, both optimization algorithms surpass the
predictive power of the final Logistic Regression and the
default MLP Neural Network.

B. Real world Impact
Besides the data used to develop the credit card

origination models referred in this case of study, the
optimization algorithms were used to develop two
additional models with completely different datasets that are
also currently being use by the bank: i) A credit card
behavior model and a ii) collection model [4]. For each
model was calculated a Logistic Regression, a default
Neural Network, a BPS and a GA. For both cases the results
of the optimization algorithms were the same and therefore
only one is displayed.

In order to measure the impact generated in the bank
caused by the application of the BPS/GA resulting network
over the Logistic Regression model and the default Neural
Network model, two comparisons were carried out. The first
comparison refers to the difference between predictive
power measured by the ROC curve. As TABLE VIII
exhibits, for the credit card behavior model the GA/BPS
network exceeds the logistic regression predictive power in
1.83% and the default MLP in 1.06%. Likewise, in the
collection model the GA/BPS model surpasses the Logistic
Regression and the default MLP predictive power in 1.03%
and 0.66% respectively.

TABLE VIII. ROC FOR EACH MODEL

Model Logistic
Regression

SAS Default
MLP

GA/PSO
MLP

Behavior 82.10% 82.72% 83.60%
Collections 88.91% 89.24% 89.83%

For the second comparison, the impact produced by the

improvement of the predictive power in the models is
measured in savings of money. This comparison is the most
important for the senior management given that at the
moment of truth is the economic impact that creates value
for the companies. The calculations and assumptions
applied to measure the economic impact of each of the
model are presented in the Appendix. In the case of the
credit card behavior model, the annual savings in expected
loss obtained by using the GA/BPS final model over the
Logistic Regression model were US$528,890, while the
saving in expected loss obtained by using the GA/BPS
network over the default MLP were US$336,502. Now, for

the collection model the savings were calculated as the
difference in annual collection fees. The savings achieved
by additional predictive power of the GA/BPS models over
the Logistic Regression were US$33,490. Equally, the
savings of the GA/BPS network over the MLP Neural
Network model were US$12,997.

Finally, since the acquisition credit card model
developed for the study of this paper is also being used by
the bank, the savings calculations were also measure by the
annual expected loss. The savings of the GA/BPS over the
Logistic Regression and the default MLP were US$225,216
and US$181,152 correspondingly.

Lastly, in order to show that it is necessary to change the
architecture of the MLP neural network to best fit each
model and therefore is efficient to use the optimization
algorithm to do so. TABLE IX displays the different final
architectures of the Neural Networks found with the
GA/BPS algorithms for every model.

TABLE IX. GA/PSO MLP NEURAL NETWORK ARCHITECTURE

Model Hidden
Layers

Hidden
Units

Direct
Connect

ion

Hidden
Layers
Bias

Hidden
Layers

Activation
Function

Target
Layer

Activation
Function

Target
Layer
Bias

Acquisition 2 6 0 1 TAN SOF 0

Behavior 3 3 0 1 TANH Logistic 0

Collections 1 5 0 1 TAN Logistic 1

V. DISCUSSION
During the last years financial institutions started using

scores not only for client acquisition but also for others
processes inside the bank such us collections, marketing,
credit maintenance among others. This due to the success of
the scores as cost savings and efficient decision making
tools. This tendency creates more pressure on the analysts to
develop algorithms faster and with a higher predictive
power, leading him to more complex techniques and hence
to new problems.

The first problem is that analysts don’t have enough time
to leave aside the simplicity of the logistic regression and
learn a new technique in order to develop more advanced
models.

The second problem refers to the way of explaining the
models to the senior management. Given that the logistic
regression interpretation is very straightforward, the senior
management can understand easily the impact of every
variable in the model as well as the logic for the business.
On the other hand, more complex techniques such as Neural
Networks are difficult to explain and understand because the
interaction and impact of the variables are unknown and the
model turns into a black box. This generates distrust in
senior management.

This paper focuses on the first issue, and provides to the
analyst a standard procedure to estimate Neural Networks
parameters in an efficient way, but there are other issues that

730

must be address like how to select variables before using
then for the Neural Network development and how to
simplify the interpretation of complex methodologies in
order to present to senior management.

VI. CONCLUSION
This paper has shown the use of GA and BPS in credit

risk modeling as techniques to optimize the process of
choosing the architecture of a MLP Neural Network that
maximizes the area under the ROC curve and therefore the
scorecard predictive power. This additional predictive power
is reflected in significant savings of money for the bank
compared with the two benchmark algorithms (Logistic
Regression and default MLP).

Additionally, it is interesting to show that for each model
the final Neural Network architecture computed with the
GA/BPS varies, demonstrating that is not a good practice to
use a single architecture to develop different models.

Also, the experimental results have shown that with far
less computational effort the GA and the BPS used to
optimize the MLP Neural Network came to a result
approximately equal to the global optimum. Also, since the
difference between the ROC curves of the optimization
algorithms and the global optimum is negligible, we
illustrate that it doesn´t represent an improvement in the
scorecard predictive power.

 It is as well important to say that the GA and the BPS
outperformed the results of the Logistic Regression and the
results of the default MLP Neural Network.

Finally, although both optimization algorithms presented
the same final ROC value, the BPS outperformed the GA in
CPU time and function calls.

APPENDIX
Calculation of the savings for each model using bank´s

internal information:

A. Acquisition model
For the acquisition model the savings are defined as the

difference of expected loss between models. In order to
calculate the expected loss the following information is
needed: number of applicants, average credit limit, portfolio
severity, and average credit card utilization.

TABLE X. ACQUISITION MODEL ASSUMPTIONS

Variable Value
Number of applications 68,123

Average credit line $ 1,500
Severity 85.0%

Average utilization 48.0%

A fixed approval rate of 53.08% was found after
determining the statistical cut point in the Logistic
Regression model [8]. Then for each model, the bad rate
above the statistical cut point is computed.

As shown in [8] the expected loss of one client is
defined as follow:

 (1)

Since we don’t have the balance for each client, it is

estimated as the average credit limit multiplied by the
average utilization.

 (2)

Finally using (2) the expected loss is calculated for each

model.

TABLE XI. ACQUISITION MODEL EXPECTED LOSS CALCULATION

Model Logistic
Default

MLP
GA/PSO

MLP
Approval rate 53.1% 53.1% 53.1%

Bad rate above the cut off 7.12% 6.92% 6.10%
Population above the cut off 36,156 36,156 36,156

Expected bad clients 2,574 2,502 2,206
Expected loss $ 1,575,288 $ 1,531,224 $ 1,350,072

B. Behavior model
The process for calculating the savings of the behavior

model is similar to the acquisition model, in which savings
are defined as the differences of the expected loss. Given the
different usage of the behavior model versus de acquisition
model, the expected loss is calculated as the balance of the
bad clients that were above the cut point at the moment of
the credit limit increase strategy.

TABLE XII. BEHAVIOR MODEL ASSUMPTIONS

Variable Value
Number of Clients 844,177

Average Credit Line $ 1,500
Average Credit Line

Increaced % 58.0%

Average Credit Line
Increaced $ 870

Severity 85.0%
Average Utilization 48.0%

TABLE XIII. BEHAVIOR MODEL EXPECTED LOSS CALCULATION

Model Logistic
Default

MLP
GA/PSO

MLP
Approval rate 80.2% 80.2% 80.2%

Bad rate above the cut off 4.39% 4.31% 4.17%
Population above the cut off 677030 677030 677030

Expected bad clients 29722 29180 28232
Expected loss $10,550,121 $10,357,733 $10,021,231

C. Collection model
For the collection model, the savings are going to be

calculated as the difference in collection fees. An internal
policy states that every client with a default probability
higher than 15% must be contacted by the collection team.
Therefore the savings are computed as the difference
between the number of clients below the cut point
multiplied by the cost of one collection action.

731

TABLE XIV. COLLECTION MODEL ASSUMPTIONS

Variable Value
Average number of
clients per month 541,234

Cost per client per
month $ 1.06

TABLE XV. COLLECTION MODEL COSTS CALCULATION

Model Logistic
Default

MLP
GA/PSO

MLP
Population below cut point 13.0% 12.7% 12.5%

Clients with collection
actions per month 70,415 68,802 67,779

Clients with collection
actions per year 844,975 825,620 813,345

Cost per year $ 894,679 $ 874,186 $ 861,189

REFERENCES
[1] C. Abranhams, M. Zhang, Fair Lending Compliance. John Wiley &

Sons, Inc. 2009.
[2] P. D. Allison. Logistic Regression using the SAS system: Theory and

Application. Sas Institute and Wiley.
[3] Paasch, Carsten A. W. Credit Card Fraud Detection Using Artificial

Neural Networks Tuned By Genetic Algorithms. The Hong Kong
University of Science and Technology. 2008.

[4] R. Anderson. The credit scoring toolkit: Theory and practice for retail
credit risk management and decision automation. Oxofrd University
press Inc, New York. 2007.

[5] R. Haupt, S. Haupt. Practical Genetic Algorithms, second edition.
John Wiley & Sons. New York. 2004.

[6] D. Lawrence, A. Solomon. Managing a consumer lending business.
Solomon, New York. 2002.

[7] R. Matignon. Neural Network Modeling using SAS Enterprise Miner.
Aithor House. 2005.

[8] E. Mays. Credit Scoring for Risk Managers. The Handbook for
Lenders. Thomson South-Western. Mason, Ohio. 2004.

[9] F, Rosenblatt. Principles of Neurodynamics. Spartan, Washington,
DC. 1962.

[10] SAS Institute Inc. Sas help and documentation, Proc Neural. SAS
Institute, Cary, NC. 2010.

[11] L. C. Thomas. Credit Scoring and its applications. Siam,
Philadelphia. 2002.

[12] L. C. Thomas. Consumer Credit Models: Pricing, Profit, and
Portafolios. Oxford, New York. 2009.

[13] B. Wamer, M. Misra. Understanding Neural Networks as Statistical
Tools. The American Statistician Association. 1996.

[14] R. Eberhart, and J. Kennedy, A New Optimizer Using Particles
Swarm Theory, Proc. Sixth International Symposium on Micro
Machine and Human Science (Nagoya, Japan), IEEE Service Center,
Piscataway, NJ, pp. 39-43, 1995.

[15] J. Kennedy, and R. Eberhart, ”Particle Swarm Optimization”, IEEE
International Conference on Neural Networks (Perth, Australia),
IEEE Service Center, Piscataway, NJ, IV, pp. 1942-1948, 1995.

[16] J. Kennedy, and R. Eberhart, A discrete binary version of the particle
swarm algorithm, IEEE International Conference on Systems, Man,
and Cybernetics, 1997.

[17] M. A. Khanesar, M. Teshnehlab, M. A. Shoorehdeli, A novel binary
particle swarm optimization, IEEE 15th Mediterranean Conference on
Control & Automation, 2009.

[18] Frank H. F. Leung, Member, IEEE, H. K. Lam, S. H. Ling, and Peter
K. S. Tam, Tuning of the Structure and Parameters of a Neural
Network Using an Improved Genetic Algorithm, IEEE Transactions
on neural networks, VOL. 14, NO. 1, January 2003.

732

