
 
 
 
 

 
 
 
 

Evolutionary algorithms for selecting the architecture of a 
MLP Neural Network: A Credit Scoring Case 

 

Alejandro Correa B., Andres Gonzalez M. 
Banco Colpatria 

Bogotá, Colombia 
{correaal, gonzalean}@colpatria.com 

 
 

Abstract—Neural Networks are powerful tools for classification 
and Regression, but it is difficult and time consuming to 
determine the best architecture for a given problem. In this 
paper two evolutionary algorithms, Genetic Algorithms (GA) 
and Binary Particle Swarm Optimization (BPS), are used to 
optimize the architecture of a Multi-Layer Perceptron Neural 
Network (MLP), in order to improve the predictive power of 
the credit risk scorecards. Results  show that both methods 
outperform the Logistic Regression and a default neural 
network in terms of predictability, but the GA are more time 
consuming than the BPS. The predictive power of both 
methods is similar to the Global Optimum but it is found in a 
reasonable time.  

Keywords; genetic algorithm; particle swarm optimization;  
credit scoring; neural networks. 

I.  INTRODUCTION 
In order to mitigate the impact of credit risk and make 

more objective and accurate decisions, financial entities have 
created new and better tools to predict and control their 
losses [4][6]. This is why it has become common in financial 
institutions around the world to use scorecards to measure a 
customer's credit risk [1][8][12]. A scorecard is a statistical 
model that allows attributing a rating (score) to a client, 
which indicates the predicted probability that the customer 
reflect a certain behavior. What is sought with scorecards is 
to create an estimated measure of a customer’s risk, i.e., the 
probability of a customer having a good payment habit if a 
loan is granted, based on past experiences [11]. The most 
commonly used method by financial institutions to estimate 
these models is the Logistic Regression [2], because of its 
predictive power and ease of interpretation. But there are 
other methods, such as Neural Networks [7] which have a 
higher level of complexity that could improve the predictive 
power of the scorecards. 

Neural Networks aren’t widely used in credit scoring due 
to two main reasons, i) the difficulty with interpretability and 
ii) the complexity in model development. When developing a 
Multi-Layer Perceptron (MLP) Neural Network, analysts 
have to address several kinds of issues regarding the Neural 
Network parameters or architecture. In this paper, an 
optimization of the architecture of the MLP Neural Network 
is made using two optimization techniques: Genetic 

Algorithm (GA) and Binary Particle Swarm (BPS) 
Optimization. The objective function to maximize is the 
ROC curve (Receiver Operating Characteristic) and the 
decision variables are the number of hidden layers and their 
activation function, the number of hidden units in each layer, 
the activation function of the target layer, and whether or not 
to use bias or to have a direct connection between the input 
and output layer. Although, a similar optimization 
methodology has been developed in other fields in the case 
of the GA [3][18], to our knowledge, these methodologies 
haven’t been applied to improve credit risk scorecards. 

This paper is divided into six sections. First, a description 
of the data and the variables used for the model development 
is made. Subsequently, there is an introduction to general 
concepts of MLP Neural Networks, GA and BPS techniques. 
The third section poses the specific definitions for modeling 
with the MLP and the optimization techniques. Next, the 
results are shown based on a comparison of the optimization 
algorithms with a default Neural Network architecture, and a 
Logistic Regression. Also, all possible architectures of the 
MLP for our case of study are calculated, and the Global 
optimum is compared. Then, the algorithm is also used to 
develop two additional models and the impact generated by 
optimization methodologies is shown.  Finally, a discussion 
is made regarding the approaches used in this paper and 
some specific issues. 

TABLE I.  DESCRIPTIVE STATISTICS OF THE VARIABLES 

Variable N Mean Std. Dev. Minimum Maximum 
X1 125,557 -0.027 5.823 -5.615 53.637 
X2 125,557 0.002 1.629 -66.097 52.220 
X3 125,557 0.003 1.511 -13.606 20.037 
X4 125,557 0.000 1.376 -13.579 33.091 
X5 125,557 0.014 2.108 -10.655 21.943 
X6 125,557 -0.014 1.710 -8.699 38.439 
X7 125,557 -0.002 1.656 -63.313 122.732 

 
Using information provided by a local bank, 125,557 

clients with active credit cards are used for the model 
construction, and with the bank’s default definition over the 
performance period, clients are classified into good and bad. 
Variables names are changed to X1 … X7 by request of the 
financial institution. The original variables have been 
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standardized and TABLE I displays the descriptive statistics 
of the seven variables, while TABLE II presents the 
correlation between them. The maximum correlation 
between the seven variables is 0.017. Finally, TABLE III 
shows how the original data is randomly divided into three 
different datasets used for the scorecard development and 
validation. 

TABLE II.  CORRELATION MATRIX 

X1 X2 X3 X4 X5 X6 X7 
X1 1 0.001 -0.005 0.004 0.017 0.003 0.000 

X2 0.001 1 -0.002 0.014 -0.003 0.000 0.000 

X3 -0.005 -0.002 1 0.011 -0.005 -0.001 -0.009 

X4 0.004 0.014 0.011 1 -0.002 0.001 -0.009 

X5 0.017 -0.003 -0.005 -0.002 1 -0.002 -0.001 

X6 0.003 0.000 -0.001 0.001 -0.002 1 0.001 

X7 0.000 0.000 -0.009 -0.009 -0.001 0.001 1 

TABLE III.  DEVELOPMENT AND VALIDATION DATASETS 

Data N Percentage of the 
total population Bad Rate 

Train 50,223 40.00% 56.48% 
Test 37,667 30.00% 56.68% 

Validation 37,667 30.00% 56.84% 
Total 125,557 100.00% 56.65% 

II. GENERAL CONCEPTS 

A. Multi-Layer Perceptron Neural Network 
An Artificial Neural Network is a 

mathematical/computational model that tries to imitate the 
structure and functionality of biological neural networks [9]. 
It is composed by a set of simple computational units that are 
highly interconnected. These units are called nodes, and each 
one represents a biological neuron. In a Neural Network, the 
hidden units receive a weighted sum of the inputs and apply 
an activation function to it. Information is passed from one 
layer to the next. Then, the output units receive a weighted 
sum of the hidden units output and apply an activation 
function to this sum. The Neural Network finds the weights 
by an iterative process through different types of algorithms. 

The network discussed in this paper is called a Multi-
Layer Perceptron Neural Network (MLP) and it has some 
specific characteristics. In order to easily explain the MLP 
Neural Network structure, Fig. 1 shows the main 
components. It has an input layer that represents the input 
variables to be used in the Neural Network model and it can 
be connected directly with the output layer. It also has i 
hidden layers and each layer contains j hidden units. In Fig. 1 
the hidden units are represented by circles. The connections 
between units are unidirectional and are represented by 
directed lines. Each connection has an associate scalar called 
weight w. The hidden units have a variety of hidden 
activation functions and also a linear combination function. 
Finally, the MLP has an output layer that computes for the 
result of the process. The output layer also has a target 
activation function. Both, the hidden layers and the output 

layer could have the bias option activated. A bias term can be 
treated as a connection weight from a special unit with a 
constant, nonzero activation value. The term "bias" is usually 
used with respect to a "bias unit" with a constant value of 
one. 

The single bias unit is connected to every hidden or 
output unit that needs a bias term. Hence the bias terms can 
be learned just like other weights.  

 

 
Figure 1.  MLP Neural Network structure. 

B. Genetic Algorithm 
A Genetic Algorithm (GA) is an optimization technique 

that attempts to replicate natural evolution processes in 
which the individuals with the considered best characteristics 
to adapt to the environment are more likely to reproduce and 
survive. These advantageous individuals mate between them, 
producing descendants similarly characterized, so favorable 
characteristics are preserved and unfavorable ones destroyed, 
leading to the progressive evolution of the species. 

GA aims to improve the solution to a problem by keeping 
the best combination of input variables. The flow diagram 
presented in Fig. 2 describes the process. It starts with the 
definition of the problem to optimize, generating an 
objective function to evaluate the possible candidate 
solutions (chromosomes), i.e., the objective function is the 
way of determining which individual produces the best 
outcome.  

The next step is to generate an initial random population 
of n individuals called chromosomes that are symbolized by 
binary strings, where each binary position of the 
chromosome is called a gene and denotes a specific 
characteristic (input variable). Therefore the combination of 
all the different characteristics encoded in the string 
represents an individual who is a candidate for the solution. 

Each chromosome is evaluated in the objective function 
and the best individuals are selected to survive for mating 
(parents), while the worse ones are discarded to make room 
for new descendants.  There are many ways of pairing the 
selected chromosomes [5]. In this paper, a weighted cost 
pairing is used, which consists of assigning a selection 
probability according to each chromosome cost. That is, a 
chromosome with the higher cost has a greater probability of 
mating because cost maximization is desired. 
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Figure 2.  GA Flow diagram [5].  

After selecting the parent chromosomes with the chosen 
pairing method, the next step is to create a second generation 
of individuals, based on the information of the parents. There 
are several ways of mating [5]. In this paper, two parents 
create one child.  

In order to transfer the parent’s binary information to the 
child, there are also different kinds of approaches such as the 
one-point crossover. The one-point crossover technique 
consists in selecting one random point on the parent’s string. 
The child is created in the following way: First, the parent1 
transfers its binary code from the first gene to the crossover 
point. Then the parent2 transfers its binary code from the 
crossover point to the last gene of the chromosome. New 
parents are randomly selected for each new child and the 
process continues until the chromosome population grows 
back to the original size n.  

Once the breeding process is completed, random 
mutation is used to alter a certain percentage of the genes of 
the chromosomes. The purpose of mutation is to introduce 
diversity into the population, allowing the algorithm to avoid 
local minima by generating new gene combinations in the 
chromosomes. The most common mutation procedure is the 
one called single point mutation. It’s implemented by 
generating a random variable that indicates the position of 
the gene that will be modified, from the population of 
chromosomes. Generally, mutation is not allowed in the best 
solution chromosomes because these “elite” individuals are 
destined to propagate unchanged. In genetic algorithm this is 
called elitism [5]. 

Finally, after mutation is done the new generation of 
chromosomes is evaluated with the objective function and 

used in the next iteration of the described algorithm. The 
algorithm iterates until a maximum number of chromosome 
generations are created or a satisfactory solution is reached. 

C. Binary Particle Swam Optimization 
Particle Swarm (PS) is a population based algorithm that 

was introduced by Eberhart and Kennedy [14][15] to 
simulate the social behavior and movements of animals 
when they are together in a swarm or a shoal. Then, the 
algorithm was used as a computation technique to optimize 
the solution of a problem using a population of candidate 
solutions called “particles”. These particles move along the 
search space based on mathematical calculations regarding 
their position and velocity. Each particle next movement is 
affected by the inertia of the current movement, the best 
position it has explore so far and the global best position 
explored in the search space by all the particles of the 
swarm. This method seeks to move the swarm toward the 
best solution. 

For the specific case of this paper, a binary 
implementation of the particle swarm (BPS) optimization 
algorithm proposed by Khanesar, Teshnehlab and 
Shoorehdeli [17] is used instead of the original binary 
algorithm of Kennedy and Eberhart [16], because the 
original algorithm presents some limitations regarding the 
parameters and the memory of the particles [17]. 

The flow diagram presented in Fig. 3 describes the 
process for the BPS. It begins with the designation of the 
cost function based on the problem to solve and the 
parameters w, c1 and c2, where w is the inertia of the current 
velocity, and c1, c2 are fixed variable defined by the user.  

The next step is to randomly initialize the n particles of 
the swarm within the search space. To do this, each binary 
value of the particles (input variable), called bit, is randomly 
set to 0 or 1. Once the initialization is done, each particle is 
decoded to the real values of the input variables and the 
performance is evaluated in the cost function. Then the 
performance of each particle is compared with its best 
solution found so far ( ) and also with the best global 
solution found by the swarm ( ). For each case, if the 
current position of the particle presents a better solution than 
its best solution found so far, then ( ) is updated with the 
new particle position. Likewise, if the best solution of the 
current positions of the particles is higher than the best 
global solution found by the swarm, then ( ) is updated.   

The next step is to update the velocity   for each 
particle. The velocity refers to how fast the particle moves in 
though the search space. Then the new position of each 
particle is calculated based on the previous value of the 
particle (inertia) and the velocity. 

Finally, the convergence criterion is verified. If the 
algorithm meets the convergence criterion them it stops, 
otherwise, the performance of the new positions of the 
particles are evaluated in the cost functions and are used in 
the next iteration of the algorithm. The BPS process can 
iterate for a fixed number of times or until a satisfactory 
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solution is reached. For more detail information about the 
formulas used in the BPS refer to Khanesar, Teshnehlab and 
Shoorehdeli [17]. 

 

 
Figure 3.  BPS Flow diagram.  

III. MODELING 
Now that the general concepts of MLP Neural Networks, 

GA and BPS have been covered, it is time to focus on the 
specific case of this paper. First, a definition about the 
activation and combination functions in the MLP is 
presented. Given that in credit scoring the objective is to 
obtain a predicted probability to reflect a certain behavior of 
a client, the MLP Neural Network target activation functions 
have been bounded to functions with range between 0 and 
TABLE IV and TABLE V present the activation and 
combination functions used in this paper. Second, the 
discussed network finds the weights through a 
backpropagation algorithm [13]. 

TABLE IV.  HIDDEN LAYERS FUNCTIONS 

Hidden Combination 
Function 

Hidden Activation 
Function 

Hidden Activation 
Function Range 

Linear: 
 

 

Linear: 
  

Logistic: 

  

arctan: 
)  

Hyperbolic Tangent: 

 
 

 
 

TABLE V.  HIDDEN LAYERS FUNCTIONS 

Target 
Combination 

Function 
Target Activation Function 

Linear: 
 

 

Logistic:  

MLogistic:  
Softmax:  

Gauss:   
               

 

Figure 4.  Chromosome/Particle Structure.  

In addition, for both optimization procedures the ROC 
curve (Receiver Operating Characteristic) is chosen as the 
objective function to maximize because it measures the 
neural network capability to assign and rank relatively more 
low scores to loans that eventually become bad than to loans 
that continue with a good behavior. The ROC is also known 
as the swap curve since it represents the exchange between 
good clients and bad clients, i.e., the percentage of bad 
clients to be allowed in order to accept a certain percentage 
of the good clients. 

Subsequently, the definition of the input variables and the 
structure of the chromosome in the case of the GA and the 
structure of the particle in the case of the BPS are carried 
out. These definitions are the same in both algorithms; the 
only difference is the way of referring to them. Seven input 
variables are selected to form the chromosome/particle that is 
going to have a total of 12 genes/bits which can generate a 
total of 4,096 ( ) possible combinations. The 
chromosome/particle structure is defined in Fig 4. 

TABLE VI.  VARIABLES ENCODING 

Hidden 
Layers Hidden Units Direct 

Connection  

Hidden 
Layers 
Bias   

00 = 1 000 = 1 0 = No 0 = No 
01 = 2 001 = 2 1 = Yes 1 = Yes 

10 = 3 … 
11 = 4 111 = 8 

     
Hidden 
Layers 

Activation 
Function 

Target Layer 
Activation 
Function 

Target Layer 
Bias 

  
00 = Logistic 00 = Logistic 0 = No 
01 = Linear 01 = MLogistic 1 = Yes 

10 = Act Tan 10 = Softmax 
11 = Tan H 11 = Gauss 
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Likewise, the variables of the chromosomes/particle are 
encoded as shown in TABLE VI. 

Finally, there are some key definitions that are specific to 
each of the optimization algorithms. For the GA there is the 
total size of the population, the number of “elite” individuals 
and the percentage of genes to mutate from the entire 
chromosome population. Correspondingly, the population 
size is 16 individuals (chromosomes), the best four solution 
chromosomes will remain unchanged and the percentage of 
mutation is 2% of the genes of the total population. In the 
case of the BPS there is the population size that is equal to 
10, the number of iterations is set to 10, the inertia weight is 
0.6, and both c1 and c2 are set to 0.6. 

IV. RESULTS 

A. Experimental results 
In this section we present the results of the GA and the 

BPS used to select the best architecture of the MLP Neural 
Network. Results of a 30 iterations run with the GA, 10 
iterations with the BPS are compared with the results of a 
Neural Network using the default parameters of SAS 
Enterprise Miner™ [10] (1 hidden layer, 3 hidden units, no 
direct connection, hidden layer bias, hyperbolic tangent 
hidden layer activation function, logistic target layer 
activation function, target layer bias), a Logistic Regression 
(most common algorithm in credit scoring) [2], and the 
global optimum. 

 

 
Figure 5.  Comparison ROC curve  

The comparison of the ROC curves obtained by the GA, 
and the BPS in the MLP network and the other three 
alternatives are exhibited in Fig. 5. The area under the ROC 
curve of the GA and the BPS is (71.25%) wish is 
significantly larger than that of the MLP Neural Network 
using the default parameters (68.09%) and the Logistic 
Regression (65.92%). This difference indicates that the GA 
and the BPS in the MLP Neural Network has a greater 

predictive power at all risk levels. The only alternative that 
slightly exceeds the GA and the BPS performance is the 
global optimum (71.26%) but the difference is so small that 
it doesn´t represent a significant improvement in predictive 
power. 

TABLE VII.  MEASURES OF COMPARISON 

Model ROC CPU time (m) Function calls 
Default MLP 68.09% 2 1 

Logistic Regression 65.92% 1 1 
GA - MLP  71.25% 559 274 
BPS - MLP  71.25% 204 100 

Global Optimum 71.26% 8,356 4,096 
 
Besides the statistical evidence presented in the ROC 

curve, TABLE VII shows the computational effort of each 
alternative through two measures, the total time spent in 
minutes (CPU time in minutes) and the number of times that 
the function was called.  Since the Logistic Regression and 
the default MLP Neural Network are run only once, both 
have only one function call and spent 1 and 2 minutes 
respectively. As presented above, this two alternatives show 
the worst predictive power measured by the ROC curve. 

The GA used to optimize the MLP Neural Network 
architecture spent 9.3 hours (559 minutes) in a 30 iteration 
run and made 274 function calls while the BPS spent 3.4 
hours (204 minutes) in the 10 iteration doing a total of 100 
function calls. Finally the model used to find the global 
optimum took 139.2 hours (8,356 minutes) and made 4,096 
function calls (all possible combinations). These last tree 
alternatives have approximately the same predictive power 
and the difference in computational effort is evident. The GA 
spent 1,395% less time and function calls than the global 
optimum finding method while the BPS spent and 3,994.4% 
less time and function calls than the global optimum finding 
method and 173.5% less time than the GA.  

 

 
Figure 6.  Leaning curve ROC versus Iteration  
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Additionally, a third comparison was made regarding the 
evolution of the optimization function (ROC curve) at each 
iteration. The learning curves of the GA and BPS are shown 
in Fig. 6.  The learning curve of the GA has a slope of 
0.0006 while the one of the BPS has slope of 0.0018 which 
translates into an average increase of 208.65% in the speed 
of evolution of the resulting networks ROC on each 
iteration of the BPS over the GA. 

Likewise it is important to note that even from the first 
iteration, both optimization algorithms surpass the 
predictive power of the final Logistic Regression and the 
default MLP Neural Network.  

B. Real world Impact 
Besides the data used to develop the credit card 

origination models referred in this case of study, the 
optimization algorithms were used to develop two 
additional models with completely different datasets that are 
also currently being use by the bank: i) A credit card 
behavior model and a ii) collection model [4]. For each 
model was calculated a Logistic Regression, a default 
Neural Network, a BPS and a GA. For both cases the results 
of the optimization algorithms were the same and therefore 
only one is displayed.  

In order to measure the impact generated in the bank 
caused by the application of the BPS/GA resulting network 
over the Logistic Regression model and the default Neural 
Network model, two comparisons were carried out. The first 
comparison refers to the difference between predictive 
power measured by the ROC curve.  As TABLE VIII 
exhibits, for the credit card behavior model the GA/BPS 
network exceeds the logistic regression predictive power in 
1.83% and the default MLP in 1.06%. Likewise, in the 
collection model the GA/BPS model surpasses the Logistic 
Regression and the default MLP predictive power in 1.03% 
and 0.66% respectively.   

TABLE VIII.  ROC FOR EACH MODEL 

Model Logistic 
Regression 

SAS Default 
MLP 

GA/PSO 
MLP 

Behavior 82.10% 82.72% 83.60% 
Collections 88.91% 89.24% 89.83% 

 
For the second comparison, the impact produced by the 

improvement of the predictive power in the models is 
measured in savings of money. This comparison is the most 
important for the senior management given that at the 
moment of truth is the economic impact that creates value 
for the companies.  The calculations and assumptions 
applied to measure the economic impact of each of the 
model are presented in the Appendix. In the case of the 
credit card behavior model, the annual savings in expected 
loss obtained by using the GA/BPS final model over the 
Logistic Regression model were US$528,890, while the 
saving in expected loss obtained by using the GA/BPS 
network over the default MLP were US$336,502.  Now, for 

the collection model the savings were calculated as the 
difference in annual collection fees. The savings achieved 
by additional predictive power of the GA/BPS models over 
the Logistic Regression were US$33,490. Equally, the 
savings of the GA/BPS network over the MLP Neural 
Network model were US$12,997.  

Finally, since the acquisition credit card model 
developed for the study of this paper is also being used by 
the bank, the savings calculations were also measure by the 
annual expected loss. The savings of the GA/BPS over the 
Logistic Regression and the default MLP were US$225,216 
and US$181,152 correspondingly.  

Lastly, in order to show that it is necessary to change the 
architecture of the MLP neural network to best fit each 
model and therefore is efficient to use the optimization 
algorithm to do so. TABLE IX displays the different final 
architectures of the Neural Networks found with the 
GA/BPS algorithms for every model.  

TABLE IX.  GA/PSO MLP NEURAL NETWORK ARCHITECTURE 

Model Hidden 
Layers 

Hidden 
Units 

Direct 
Connect

ion 

Hidden 
Layers 
Bias 

Hidden 
Layers 

Activation 
Function 

Target 
Layer 

Activation 
Function 

Target 
Layer 
Bias 

Acquisition 2 6 0 1 TAN SOF 0 

Behavior 3 3 0 1 TANH Logistic 0 

Collections 1 5 0 1 TAN Logistic 1 

V. DISCUSSION 
During the last years financial institutions started using 

scores not only for client acquisition but also for others 
processes inside the bank such us collections, marketing, 
credit maintenance among others. This due to the success of 
the scores as cost savings and efficient decision making 
tools. This tendency creates more pressure on the analysts to 
develop algorithms faster and with a higher predictive 
power, leading him to more complex techniques and hence 
to new problems. 

The first problem is that analysts don’t have enough time 
to leave aside the simplicity of the logistic regression and 
learn a new technique in order to develop more advanced 
models.  

The second problem refers to the way of explaining the 
models to the senior management. Given that the logistic 
regression interpretation is very straightforward, the senior 
management can understand easily the impact of every 
variable in the model as well as the logic for the business. 
On the other hand, more complex techniques such as Neural 
Networks are difficult to explain and understand because the 
interaction and impact of the variables are unknown and the 
model turns into a black box. This generates distrust in 
senior management.  

This paper focuses on the first issue, and provides to the 
analyst a standard procedure to estimate Neural Networks 
parameters in an efficient way, but there are other issues that 
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must be address like how to select variables before using 
then for the Neural Network development and how to 
simplify the interpretation of complex methodologies in 
order to present to senior management.  

VI. CONCLUSION 
This paper has shown the use of GA and BPS in credit 

risk modeling as techniques to optimize the process of 
choosing the architecture of a MLP Neural Network that 
maximizes the area under the ROC curve and therefore the 
scorecard predictive power. This additional predictive power 
is reflected in significant savings of money for the bank 
compared with the two benchmark algorithms (Logistic 
Regression and default MLP). 

Additionally, it is interesting to show that for each model 
the final Neural Network architecture computed with the 
GA/BPS varies, demonstrating that is not a good practice to 
use a single architecture to develop different models. 

Also, the experimental results have shown that with far 
less computational effort the GA and the BPS used to 
optimize the MLP Neural Network came to a result 
approximately equal to the global optimum. Also, since the 
difference between the ROC curves of the optimization 
algorithms and the global optimum is negligible, we 
illustrate that it doesn´t represent an improvement in the 
scorecard predictive power. 

 It is as well important to say that the GA and the BPS 
outperformed the results of the Logistic Regression and the 
results of the default MLP Neural Network. 

Finally, although both optimization algorithms presented 
the same final ROC value, the BPS outperformed the GA in 
CPU time and function calls. 

APPENDIX 
Calculation of the savings for each model using bank´s 

internal information: 

A. Acquisition model 
For the acquisition model the savings are defined as the 

difference of expected loss between models. In order to 
calculate the expected loss the following information is 
needed: number of applicants, average credit limit, portfolio 
severity, and average credit card utilization. 

TABLE X.  ACQUISITION MODEL ASSUMPTIONS 

Variable Value 
Number of applications 68,123 

Average credit line $ 1,500 
Severity 85.0% 

Average utilization 48.0% 
 

A fixed approval rate of 53.08% was found after 
determining the statistical cut point in the Logistic 
Regression model [8]. Then for each model, the bad rate 
above the statistical cut point is computed. 

As shown in [8] the expected loss of one client is 
defined as follow: 

               (1) 
 
Since we don’t have the balance for each client, it is 

estimated as the average credit limit multiplied by the 
average utilization.  

 
 (2) 

 
Finally using (2) the expected loss is calculated for each 

model. 

TABLE XI.  ACQUISITION MODEL EXPECTED LOSS CALCULATION 

Model Logistic 
Default 

MLP 
GA/PSO 

MLP 
Approval rate 53.1% 53.1% 53.1% 

Bad rate above the cut off 7.12% 6.92% 6.10% 
Population above the cut off 36,156 36,156 36,156 

Expected bad clients 2,574 2,502 2,206 
Expected loss $ 1,575,288 $ 1,531,224 $ 1,350,072 

B. Behavior model 
The process for calculating the savings of the behavior 

model is similar to the acquisition model, in which savings 
are defined as the differences of the expected loss. Given the 
different usage of the behavior model versus de acquisition 
model, the expected loss is calculated as the balance of the 
bad clients that were above the cut point at the moment of 
the credit limit increase strategy.  

TABLE XII.  BEHAVIOR MODEL ASSUMPTIONS 

Variable Value 
Number of Clients 844,177 

Average Credit Line $ 1,500 
Average Credit Line 

Increaced % 58.0% 

Average Credit Line 
Increaced $ 870 

Severity 85.0% 
Average Utilization 48.0% 

TABLE XIII.  BEHAVIOR MODEL EXPECTED LOSS CALCULATION 

Model Logistic 
Default 

MLP 
GA/PSO 

MLP 
Approval rate 80.2% 80.2% 80.2% 

Bad rate above the cut off 4.39% 4.31% 4.17% 
Population above the cut off 677030 677030 677030 

Expected bad clients 29722 29180 28232 
Expected loss $10,550,121 $10,357,733 $10,021,231 

C. Collection model 
For the collection model, the savings are going to be 

calculated as the difference in collection fees. An internal 
policy states that every client with a default probability 
higher than 15% must be contacted by the collection team. 
Therefore the savings are computed as the difference 
between the number of clients below the cut point 
multiplied by the cost of one collection action. 
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TABLE XIV.  COLLECTION MODEL ASSUMPTIONS 

Variable Value 
Average number of 
clients per month 541,234 

Cost per client per 
month $ 1.06 

TABLE XV.  COLLECTION MODEL COSTS CALCULATION 

Model Logistic 
Default 

MLP 
GA/PSO 

MLP 
Population below cut point 13.0% 12.7% 12.5% 

Clients with collection 
actions per month 70,415 68,802 67,779 

Clients with collection 
actions per year 844,975 825,620 813,345 

Cost per year $ 894,679 $ 874,186 $ 861,189 
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